Day 03

Spatial Descriptions

Points and Vectors

point : a location in space
vector : magnitude (length) and direction between two points

Coordinate Frames

choosing a frame (a point and two perpendicular vectors of unit length) allows us to assign coordinates

Coordinate Frames

the coordinates change depending on the choice of frame

Dot Product

the dot product of two vectors

$$
u=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \quad u \cdot v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}=u^{T} v
$$

Vector Projection and Rejection

$$
\frac{u \cdot v}{v \cdot v} v
$$

if u and v are unit vectors (have magnitude equal to 1) then the projection becomes

$$
\hat{u} \cdot \hat{v} \hat{v}
$$

Translation

suppose we are given o_{1} expressed in $\{0\}$

$$
o_{1}^{0}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

Translation 1

the location of $\{1\}$ expressed in $\{0\}$

$$
d_{1}^{0}=o_{1}^{0}-o_{0}^{0}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

Translation 1

the translation vector d_{j}^{i} can be interpreted as the location of frame $\{\mathrm{j}\}$ expressed in frame $\{\mathrm{i}\}$

Translation 2

a point expressed in frame $\{1\}$

p^{1} expressed in $\{0\}$

$$
p^{0}=d_{1}^{0}+p^{1}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Translation 2

2. the translation vector d_{j}^{i} can be interpreted as a coordinate transformation of a point from frame $\{\mathrm{j}\}$ to frame $\{\mathrm{i}\}$

Translation 3

$$
\begin{aligned}
& p^{0}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \bullet \underset{0_{0}}{\substack{\hat{y}_{0} \\
\overbrace{0} \\
\hat{x}_{0}}} \quad q^{0}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& \{0\}
\end{aligned}
$$

- q^{0} expressed in $\{0\}$

$$
q^{0}=d+p^{0}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Translation 3

3. the translation vector d can be interpreted as an operator that takes a point and moves it to a new point in the same frame

Rotation

- suppose that frame $\{1\}$ is rotated relative to frame $\{0\}$

Rotation 1

the orientation of frame $\{1\}$ expressed in $\{0\}$

$$
R_{1}^{0}=\left[\begin{array}{ll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0}
\end{array}\right]
$$

Rotation 1

the rotation matrix R_{j}^{i} can be interpreted as the orientation of frame $\{\mathrm{j}\}$ expressed in frame $\{\mathrm{i}\}$

Rotation 2

- p^{1} expressed in $\{0\}$

$$
\begin{aligned}
& \hat{y}_{0} \quad \bullet p^{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \hat{y}_{1} \\
& p^{0}=R_{1}^{0} p^{1}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Rotation 2

2. the rotation matrix R_{j}^{i} can be interpreted as a coordinate transformation of a point from frame $\{\mathrm{j}\}$ to frame $\{\mathrm{i}\}$

Rotation 3

- q^{0} expressed in $\{0\}$

Rotation 3

3. the rotation matrix R can be interpreted as an operator that takes a point and moves it to a new point in the same frame

Properties of Rotation Matrices

- $R^{T}=R^{-1}$
the columns of R are mutually orthogonal each column of R is a unit vector det $R=1$ (the determinant is equal to 1)

Rotation and Translation

Rotations in 3D

$$
R_{1}^{0}=\left[\begin{array}{lll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]
$$

